Professional 3D printing usually brings to mind large, expensive machines and expensive media. Prints are of good quality, materials are strong and often production quality with the right materials. The price, though, makes it unreasonable for every engineer to have a 3D printer or even to have access to one if the company isn’t large enough to afford them.

Personal 3D printers often conjure images of Yoda prints and plywood frames holding bare electronics. Only recently have personal 3D printers become polished enough to be part of the toolkit available to anyone who has the need for one. Each user also needs to be able to know the software to generate the 3D files and to tweak the output to the printer to optimize the results.

The Robox has the potential to change all of this. With the material profiles and print profiles being easily transferable and shareable, with the AutoMaker software able to import most stl files, it isn’t hard to see a personal 3D printer as part of an engineer’s standard equipment. For the cost of a second workstation, every engineer in a company has the ability to rapidly and cheaply print a prototype. The profiles that have been shown to work well are shared with everyone and the same materials can be used throughout the company. Because the material profiles are loaded on the smart reels, material changes are as easy as swapping reels. The AutoMaker software cuts the learning curve providing fast results with a minimum of training.

Couple the out-of-the-box simplicity of Robox with a local support representative and you have a 3D printer solution that is very difficult to beat. A new machine can be set up and ready to print onsite in less than two hours, faster if the initial calibration is performed by the support representative before delivery. The AutoMaker software plays a large part in that speed due to its simplicity and user-friendliness. A new user who is trained in CAD will be able to start importing profiles and parts to be printed in a matter of minutes and will be ready to print shortly thereafter.

Robox and the shared common framework that accompanies the product represent the next step in day to day access to 3D printing, both for the home user and for industry. Improvements slated for Robox will build on that strength. The dual material head, for instance, will allow support material or dual color prints with the same Robox simplicity that the current single material capability provides now. There is room to grow and Robox has the potential to continue to be a contender in a rapidly growing market.

I chose to support the Robox project for the qualities outlined. As an aerospace professional working on complex, cutting edge technology and also as an inventor and maker, I see the need to be able to make a physical model very soon in the development cycle. My use of the Robox will be to create prototypes, to make test units so that I can confirm geometry and operation of a design, and to make parts for small production runs of products. In ten years of experience in my industry and in twice that in personal projects, the uses for a 3D printer have been uncountable. The Robox brought simplicity, ease of use, and a high level of adaptability, both in material types that it can use and in the potential to change out the head to add capability. Even in the beta period, the Robox has been valuable in confirming that a design works and has potential in the application it was intended to fill. The prototype I printed helped the customer feel comfortable with a technology even though it hasn’t been fully tested and confirmed. That alone makes the project worth the money and time I have spent this far and in the future I fully expect it to pay for itself in ease of prototyping and in reduced production cost as I move products to market though small-scale production.